Age-Related Cellular Copper Dynamics in the Fungal Ageing Model Podospora anserina and in Ageing Human Fibroblasts

نویسندگان

  • Christian Q. Scheckhuber
  • Jürgen Grief
  • Emmanuelle Boilan
  • Karin Luce
  • Florence Debacq-Chainiaux
  • Claudia Rittmeyer
  • Ricardo Gredilla
  • Bernd O. Kolbesen
  • Olivier Toussaint
  • Heinz D. Osiewacz
چکیده

In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does autophagy mediate age-dependent effect of dietary restriction responses in the filamentous fungus Podospora anserina?

Autophagy is a well-conserved catabolic process, involving the degradation of a cell's own components through the lysosomal/vacuolar machinery. Autophagy is typically induced by nutrient starvation and has a role in nutrient recycling, cellular differentiation, degradation and programmed cell death. Another common response in eukaryotes is the extension of lifespan through dietary restriction (...

متن کامل

Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina

Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly...

متن کامل

RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model

Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharom...

متن کامل

Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain

Mitochondrial maintenance crucially depends on the quality control of proteins by various chaperones, proteases and repair enzymes. While most of the involved components have been studied in some detail, little is known on the biological role of the CLPXP protease complex located in the mitochondrial matrix. Here we show that deletion of PaClpP, encoding the CLP protease proteolytic subunit CLP...

متن کامل

Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span.

A global depletion of cellular copper as the result of a deficiency in high-affinity copper uptake was previously shown to affect the phenotype and life span of the filamentous fungus Podospora anserina. We report here the construction of a strain in which the delivery of copper to complex IV of the mitochondrial respiratory chain is affected. This strain, PaCox17::ble, is a PaCox17-null mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009